
JOUKNAL OF COMPUTATIONAL PHYSICS 69, 482486 (1987) 

Note 

An Alternative Form for the Legendre Polynomial 
Expansion Coefficients 

1. INTRODUCTION 

For - 1 <X 6 1, the expansion of a function ,f(x) as a sum of Legendre 
polynomials Pi(.y) with coefficient a, is given by 

,= 7 
“0-x) = t c (2j+ 1) u,P,(x), (1) , = 0 

u, = s + ’ I’ f‘(x) P,(x) dx. (2) 

The analytic evaluation of the coefficients a, requires the specific expression for the 
k th Legendre polynomial for all values of k <j and, in general, requires a sum of 
integrals of the form j xtj’(.x) dx. 

A new form for the coefficients A, ( =u,) is given by, 

A=2y _ +I dvcos[(j+ l/2) cos ~-’ y] 
I 7c I I (1 -$)‘Q L(Y), (3) 

where 

This form has a number of interesting properties including the one that the same 
integral involving f(-x) is used for all coefficients. In addition, the Legendre 
polynomials themselves do not appear explicity in Aj. 

The proof of the equivalence of A, and a, is given in Section 2. Certain features of 
A, are illustrated in Section 3 by a calculation of the expansion coefficients for a 
probability function derived from the Born approximation to the problem of MeV- 
electrons scattered by a screened Coulomb potential. 
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2. EQUIVALENCE OF a and A 

For an arbitrary coefficient A,,, substitution of Eq. (1) forf(x) into Eq. (3) gives 
(with 4 = cos ’ ~1 and some rearrangement), 

(5) 

From Gradshteyn and Ryzhik [2, Sect. 77225- 11, 

J’ 1’ P,(x) d.u 1 1 

, (y-x)“* =(.i+$) (1 +r)’ z 
CT,(Y) + T,, ,Lv)l> 

where T,(y) is a Chebyshev polynomial of the first kind. If the cosine function in 
Eq. (5) is expressed in terms of the Chebyshev polynomials, then the orthogonality 
conditions on these polynomials result in a value of rc for j= n in the sum of 
integrals and zero for all other j values. 

3. EVALUATION OF A, 

The procedure for evaluating the expansion coefficients A, will be illustrated by 
considering the expansion of a function that appears in the theory of electron scat- 
tering. For an electron scattered by a screened Coloumb potential, the scattering 
probability per unit solid angle at 0 is given in the Born approximation by,f(x)/2n, 
where 

f.(s)=B(B+2) 1 
2 (1 + B-x)’ (6) 

and 

s +,’ j’(x) dx = 1. 

In these expressions ,Y = cos 8 and the constant B, which depends on the total 
energy, is related to the total scattering cross section or by, 

2 

For all A, coefficients, the function L(J)) must be determined. Iff‘(x) is given by 
Eq. (6) we have 

B( 1 +JJ)‘!’ B(B+2) 
L(?‘)=(l+B-y)+(l+B-y)3’2 

arctan [l :+B-l.l’i2. 
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FIG. I. The function L(J,) given by Eq. (4) for different values of the energy parameter B in .f(s) 
(Eq. (6)). (a) B= 10.8 x 10~ ‘, (b) B=4.05 x IO ‘, (c) B = 2.16 x IO ?. All the L(J) functions are zero at 
J = - I, and have been normalized to unity at J = + I. For (I -c’, the values of B correspond to the scat- 
tering by aluminum of electrons with energies 0.5, 1.0. and 1.5 MeV, respectively. 

Figure I shows several curves for I,(),) with different values for the constant B. For 
illustration purposes, the L(y) values have been normalized to unity at x = 1 and, 
since the curves are very steep, only the portion near x = 1 is shown. All L(J,) cur- 
ves decrease monotonically to zero at x = ~ 1. 

If we now write 

F(J~)=cos[(.j+~)cos $1 L(y), 

then 

A=y 
s 

+’ F(1’)dJ 
/ (7) 

71 , (I -)!2)‘,2’ 

The integral in Eq. (7) can be evaluated as a gaussian sum, with remainder R,, 
[ 1, Sect. 25.4.381. 

+ ’ KY) 
, (1 -4,y 

dy=;‘~‘F(y,)+R,,. 
,=I 

(8) 

where 

and 

F(.v,) = Ccos(j+ l/2) &I Uy,), 
ui=7c(i- l/2)/n, 

J’[ = cos u,. 

For .f’(x) given by Eq. (6), a comparison was made between a, and A,, using the 
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explicit forms for the Legendre polynomials for j < 12 given in [ 11. For n equal to 
lo3 in Eq. (8), the discrepancy between the two values was < 10 P6. For II equal to 
2.103, the discrepance was < 10 ‘. 

4. DISCUSSION 

In Section 3, good agreement was found between the values of A, calculated 
numerically from Eq. (7), and a,, evaluated analytically for values of j< 12. The 
value of u, can also be determined numerically from Eq. (1) by a GausssLegendre 
sum Cll, 

a, = ,c, (O,f(-K;) P,(x,L 

where the Pi(x,) are calculated from the recursion relation, 

(9) 

P,(s,)=@sx,P, 
.i 

,(x,)-!-y P, ?(X,). (10) 

Alternatively, a, can be calculated from, 

For a specified number of points II, the coefficients of f(x) in Eqs. (9) and (11) 
can be calculated and stored in an array. The computation of a, then requires n 
multiplications and n additions. A similar procedure can be used for the evaluation 
of A, through Eq. (7) except that, in the latter case, ,!(I?,) must be obtained instead 
off’(x,). However, for a fixed number of points, the accuracy of the coefficients (a, 
or A,) decreases with increasing j value. 

If it is desired to calculate all coefficients to the same predetermined accuracy, an 
adaptive gaussian routine can be used. In such a routine, the subdivision of interval 
of integration, and the corresponding choices of xi and yi, are determined by the 
specific integral that is being calculated. Consequently, different x, and yi values will 
be selected for different j coefficients. In this situation, it is not feasible to 
precalculate an array of multiplying factors for f(x,) or L( v,) in Eq. (4) or (7). 

For the computation of the expansion coefficients to a prescribed confidence level 
by an adaptive gaussian routine, there are cases where it is advantageous to 
calculate A, instead of II,, particularly for large j values. The calculation of a,, using 
Eq. 9, requires the value of P,(x,), using Eq. (lo), at each gaussian point selected. In 
turn, this requires all P,(x;) values for k <j. Each evaluation of Eq. (10) requires 6 
multiplications/divisions and 3 additions/subtractions and the number of com- 
putations for each P,(x,) value can become large if j is large. In contrast, in the 
calculation of A, using Eq. (7), the factor multiplying L(y,) is evaluated only once 
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for each gaussian y, point. Even though an arc-cosine and cosine are required for 
this factor, the calculation can be much faster than ,j evaluations of Eq. (10). Since 
L(y,) must also be determined, the greatest advantage ensues when L(y) can be 
evaluated analytically, as in the example given in Section 3. When L(y) must be 
evaluated numerically, the advantage is less. The integral in Eq. (4) can be written 
in a simple gaussian form with the substitution zi2 = (1 -J,‘). However, the 
additional number of computations for each I’, value and the increase in complexity 
make this procedure generally less attractive. 

For the example given in Section 3, an adaptive gaussian routine was used to 
compute both a, and A, to an accuracy of 1%. For ,j= 10, CI, required 207 points 
and A, required 215 points, with corresponding times of 24.5 ms and 26.2 ms. 
However, for,j= 100, the numbers of points were 699 and 727, while the time for (I, 
was 647 ms compared with 81 ms for A,. For j= 200. the numbers of points were 
still approximately equal ( h 13.50) but the time for the calculation of LI, was fifteen 
times longer than for A, (2.29 s compared with 1.50 ms). 

5. SUMMARY 

A new expression has been presented for the Legendre polynomial-expansion 
coefficients of a functionf(x). The polynomials themselves,do not appear explicitly 
in the expression. In addition to its intrinsic interest, the new expression has some 
interesting features that make it particularly useful for the computation of high- 
order coefficients for those cases in which i ,f(x) d.u/(~ - x)‘,? can be evaluated 
analytically. 
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